开发指南¶
本指南将帮助您深入了解如何使用 锐境 AI 进行开发。
开发环境设置¶
Python 环境¶
# 创建虚拟环境
python -m venv venv
# 激活虚拟环境
# Windows
venv\Scripts\activate
# Linux/Mac
source venv/bin/activate
# 安装SDK
pip install ruijing-ai
Node.js 环境¶
高级功能¶
流式响应¶
对于长文本生成,使用流式响应可以提供更好的用户体验。
from ruijing_ai import Client
client = Client(api_key="your_key")
stream = client.chat.completions.create(
model="ruijing-gpt-2.0",
messages=[{"role": "user", "content": "写一篇长文章"}],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content:
print(chunk.choices[0].delta.content, end="", flush=True)
函数调用¶
让模型调用外部函数。
functions = [
{
"name": "get_weather",
"description": "获取指定城市的天气",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "城市名称"
}
},
"required": ["city"]
}
}
]
response = client.chat.completions.create(
model="ruijing-gpt-2.0",
messages=[{"role": "user", "content": "北京今天天气怎么样?"}],
functions=functions
)
批量处理¶
# 批量处理多个请求
requests = [
{"messages": [{"role": "user", "content": f"问题{i}"}]}
for i in range(10)
]
responses = client.batch.create(
model="ruijing-gpt-2.0",
requests=requests
)
最佳实践¶
1. 提示词工程¶
清晰的指令
# 好的提示词
prompt = """
请分析以下文本的情感倾向,并给出理由。
文本:这个产品真的很棒!
请按以下格式回答:
情感:[正面/负面/中性]
理由:[具体理由]
"""
# 不好的提示词
prompt = "分析情感"
提供示例
2. 错误处理¶
from ruijing_ai import Client, RuijingError
import time
def call_with_retry(max_retries=3):
for i in range(max_retries):
try:
response = client.chat.completions.create(...)
return response
except RuijingError as e:
if e.code == 429: # 速率限制
time.sleep(2 ** i)
continue
raise
3. 性能优化¶
使用缓存
from functools import lru_cache
@lru_cache(maxsize=100)
def get_embedding(text):
return client.embeddings.create(
model="ruijing-embedding",
input=text
)
并发请求
import asyncio
from ruijing_ai import AsyncClient
async def process_batch(texts):
client = AsyncClient(api_key="your_key")
tasks = [
client.chat.completions.create(
model="ruijing-gpt-2.0",
messages=[{"role": "user", "content": text}]
)
for text in texts
]
return await asyncio.gather(*tasks)
常见模式¶
对话系统¶
class ChatBot:
def __init__(self, api_key):
self.client = Client(api_key=api_key)
self.messages = []
def chat(self, user_input):
self.messages.append({
"role": "user",
"content": user_input
})
response = self.client.chat.completions.create(
model="ruijing-gpt-2.0",
messages=self.messages
)
assistant_message = response.choices[0].message.content
self.messages.append({
"role": "assistant",
"content": assistant_message
})
return assistant_message
文档问答¶
def document_qa(document, question):
prompt = f"""
基于以下文档回答问题。
文档:
{document}
问题:{question}
回答:
"""
response = client.chat.completions.create(
model="ruijing-gpt-2.0",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content
调试技巧¶
启用调试模式¶
查看请求详情¶
更多资源¶
持续学习,不断进步!